ó㳺íà íàñåëåíèõ ì³ñöüISSN: 2707-0441 eISSN: 2707-045X
Âèïóñê 73, 2023   -   Ñòîð³íêè: 31-38
ÏÎØÓÊ ÌÅÒÎÄÈ×ÍÈÕ ÏÐÈÉÎ̲ òòªÍ²×Íί ÎÖ²ÍÊÈ ÏÎÁÓÒÎÂÈÕ ÏÐÈËÀÄ²Â Ç ÎÇÎÍÓÂÀÍÍß ÏβÒÐß ÏÐÈ̲ÙÅÍÜ ÆÈÒËÎÂÈÕ ÒÀ ÃÐÎÌÀÄÑÜÊÈÕ ÁÓIJÂÅËÜ
Ìèõ³íà Ë.².1, Òóðîñ Î.².1, Ïåòðîñÿí À.À1, Áðåç³öüêà Í.Â.1, Ìàðåìóõà Ò.Ï.1, Äàâèäåíêî Ã.Ì.1, Êîáçàðåíêî ².Â.1
1 ÄÓ "²ÍÑÒÈÒÓÒ ÃÐÎÌÀÄÑÜÊÎÃÎ ÇÄÎÐÎÂ'ß ²Ì. Î.Ì. ÌÀÐǪªÂÀ ÍÀÌÍÓ"
https://doi.org/10.32402/hygiene2023.73.031

ÀÍÎÒÀÖ²ß:
Ìåòà. Îïèñàòè ìåòîäèêó âñòàíîâëåííÿ ìàñîâèõ êîíöåíòðàö³é îçîíó â ïîâ³òð³ ïðèì³ùåíü ð³çíèõ çà îá’ºìîì ïîâ³òðÿ ï³ä ÷àñ ïîáóòîâîãî îçîíóâàííÿ.
Ìàòåð³àëè òà ìåòîäè äîñë³äæåííÿ.  äîñë³äæåíí³ äëÿ ãåíåðàö³¿ îçîíó âèêîðèñòîâóâàâñÿ áàãàòîôóíêö³îíàëüíèé ïîáóòîâèé îçîíàòîð, ÿêèé áóâ âì³ùåíèé â åêñïåðèìåíòàëüíó êàìåðó îá’ºìîì 0,096 ì3. Îçîíàòîð áóâ íàëàøòîâàíèé íà ï³äòðèìêó çàâäàíî¿ êîíöåíòðàö³¿ 0,1 ìã/ì3 òà ïðîäóêòèâí³ñòþ 10 ã/60 õâ. çã³äíî ïàñïîðòó. Àíàë³ç ïðîá ïîâ³òðÿ ïðîâîäèâñÿ ï³ñëÿ ð³çíîãî ÷àñó îçîíóâàííÿ íà ï³äñòàâ³ âèìîã ïàñïîðòó âèêîðèñòàííÿ ïðèëàäó ïðîòÿãîì 30, 60 òà 180 õâèëèí.
³äá³ð òà àíàë³ç ïðîá ïîâ³òðÿ ïðîâîäèëè çà äîïîìîãîþ ãàçîàíàë³çàòîðà îçîíó Horiba APOA-370. Ïðèíöèï ðîáîòè àíàë³çàòîðà – ìåòîä íåäèñïåðñ³éíî¿ óëüòðàô³îëåòîâî¿ àáñîðáö³¿ ç ïåðåõðåñíîþ ìîäóëÿö³ºþ (NDUV).
Ñòàòèñòè÷íèé àíàë³ç ðåçóëüòàò³â âèì³ðþâàíü ïðîâîäèâñÿ çà äîïîìîãîþ ìåòîä³â îïèñîâî¿ ñòàòèñòèêè ç âèêîðèñòàííÿì ïðîãðàìè STATISTICA.
Ðåçóëüòàòè òà îáãîâîðåííÿ. Ìàñîâ³ êîíöåíòðàö³¿ îçîíó, ÿê³ âèì³ðþâàëèñÿ çà óìîâ íàñè÷åíîñò³ ïîâ³òðÿ åêñïåðèìåíòàëüíî¿ êàìåðè 0,17 ã/0,096 ì3 çà îäíó õâèëèíó, áóëè íàäàë³ âèêîðèñòàí³ äëÿ ðîçðàõóíêó ìîæëèâèõ êîíöåíòðàö³¿ îçîíó â ïîâ³òð³ ïðèì³ùåííÿ.
Äëÿ ðîçðàõóíêó êîíöåíòðàö³¿ îçîíó â ïîâ³òð³ ïðèì³ùåííÿ ï³ä ÷àñ îçîíóâàííÿ áóëè çàïðîïîíîâàí³ íàñòóïí³ ôîðìóëè): Ñ1 = Ñ2 õ k, äå Ñ1 – ðîçðàõóíêîâà êîíöåíòðàö³ÿ îçîíó, ùî ìîæå óòâîðþâàòèñÿ ï³ä ÷àñ îçîíóâàííÿ (ìã/ì3); Ñ2 – êîíöåíòðàö³ÿ îçîíó â êàìåð³, ùî óòâîðþºòüñÿ ï³ä ÷àñ ðîáîòè îçîíàòîðó ç âèçíà÷åíîþ ïðîäóêòèâí³ñòþ ïðèëàäó (ìã/ì3); k – ðîçðàõîâàíèé êîåô³ö³ºíò ñï³ââ³äíîøåííÿ îá’ºì³â ïîâ³òðÿ åêñïåðèìåíòàëüíî¿ êàìåðè òà ïðèì³ùåííÿ. Çà îòðèìàíèìè äàíèìè ðîçðàõóíîê êîíöåíòðàö³¿ áóâ ïðîâåäåíèé íà ïðèêëàä³ ìîæëèâîãî îçîíóâàííÿ ïîâ³òðÿ ó íàéìåíøîìó çà ðîçì³ðîì ïðèì³ùåíí³ (S=5 ì2; h=2,5 ì) çã³äíî ç ÄÁÍ Â.2.2-15:2019. Îá’ºì ïîâ³òðÿ â äàíîìó âèïàäêó ñêëàäຠ12,5 ì3, à ðîçðàõóíêîâèé êîåô³ö³ºíò – 0,00768.  çàëåæíîñò³ â³ä çì³íè îá’ºìó ïîâ³òðÿ ïðèì³ùåííÿ, êîåô³ö³ºíò ìîæå çì³íþâàòèñÿ, ùî ó ïîäàëüøîìó íàäຠìîæëèâ³ñòü âèêîðèñòîâóâàòè äàíèé ï³äõ³ä äî ðîçðàõóíêó êîíöåíòðàö³¿ îçîíó â ïðèì³ùåííÿõ ç ð³çíèì îá’ºìîì ïîâ³òðÿ.
Âèñíîâêè. Ïîêàçàíî, ùî äàíèé ï³äõ³ä ìîæíà âèêîðèñòîâóâàòè ïðè âñòàíîâëåíí³ îçîíàòîð³â â ïðèì³ùåííÿõ ç ð³çíèì îá’ºìîì ïîâ³òðÿ. Ïîðóøåííÿ ïðàâèë âèêîðèñòàííÿ îçîíàòîðà òà ïåðåâèùåííÿ âì³ñòó îçîíó ó ïðèì³ùåíí³ ìîæå âèêëèêàòè îòðóºííÿ, ÿêå ïðîÿâëÿºòüñÿ òàêèìè ñèìïòîìàìè: ãîëîâíèì áîëåì, çàïàìîðî÷åííÿì, ð³çêîþ âòîìîþ, çíèæåíîþ ïðàöåçäàòí³ñòþ, ïîðóøåííÿì äèõàííÿ, ïîäðàçíåííÿì âåðõí³õ äèõàëüíèõ øëÿõ³â, àëåðã³÷íèìè ðåàêö³ÿìè, ïå÷³ííÿì òà ïî÷åðâîí³ííÿì î÷åé, òîùî. Îçîí ìîæå çá³ëüøóâàòè àêòèâí³ñòü òðîìáîöèò³â, ùî ïðèçâîäèòü äî çá³ëüøåííÿ àðòåð³àëüíîãî òèñêó. Âèñîêà êîíöåíòðàö³ÿ ãàçó òîêñè÷íà, ùî íåãàòèâíî âïëèâຠíà ñëèçîâ³ ëåãåíü, ìîæå ñïðîâîêóâàòè àòåðîñêëåðîç, ïðèçâåñòè äî áåçïë³ääÿ.

ÊËÞ×β ÑËÎÂÀ:
Îçîí, ïîáóòîâ³ îçîíàòîðè, ðîçðàõóíîê ìàñîâî¿ êîíöåíòðàö³¿ îçîíó â ïîâ³òð³ ïðèì³ùåíü æèòëîâèõ òà ãðîìàäñüêèõ áóä³âåëü.

˲ÒÅÐÀÒÓÐÀ:
1. Weschler CJ, Shields ÍÑ, Naik DV. Indoor Ozone Exposures. Air Repair. 1989:1562-8. Available from: https://pubmed.ncbi.nlm.nih.gov/2607364/ doi: https://doi.org/10.1080/08940630.1989.10466650
2. Weschler CJ. Ozone in indoor environments: Concentration and chemistry. Indoor Air. 2010. Available from: https://www.researchgate.net/publication/12239171_Ozone_in_Indoor_Environments_Concentration_and_Chemistry doi: https://doi.org/10.1034/j.1600-0668.2000.010004269.x
3. Salonen H, Salthammer T, Morawska L. Human exposure to ozone in school and office indoor environments. Environment International. 2018;119(1):503-14. Available from: https://www.researchgate.net/publication/326671696_Human_exposure_to_ozone_in_school_and_office_indoor_environments doi: https://doi.org/10.1016/j.envint.2018.07.012
4. Nazaroff WW, Weschler CJ. Indoor ozone: Concentrations and influencing factors.oncentrations and influencing factors. Indoor Air. 2022;32(1):e12942. Available from: https://pubmed.ncbi.nlm.nih.gov/34609012/ doi: https://doi.org/10.1111/ina.12942
5. Yu Huang, Zhe Yang, Zhi Gao. Contributions of Indoor and Outdoor Sources to Ozone in Residential Buildings in Nanjing. Environmental Research and Public Health. 2019;16(14):2587. Available from: https://pubmed.ncbi.nlm.nih.gov/31331082/ doi: https://doi.org/10.3390/ijerph16142587
6. Zhang Q, Jenkins PL. Evaluation of Ozone Emissions and Exposures from Consumer Products and Home Appliances. Indoor Air. 2016. Available from: https://www.researchgate.net/publication/301940877_Evaluation_of_Ozone_Emissions_and_Exposures_from_Consumer_Products_and_Home_Appliances doi: https://doi.org/10.1111/ina.12307
7. Nicole B, Ahmad A, Nizkorodov SA. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. Air Repair. 2006. Available from: https://www.tandfonline.com/doi/pdf/10.1080/10473289.2006.10464467 doi: https://doi.org/10.1080/10473289.2006.10464467
8. Gonzalo FA, Griffin M, Laskosky J. Assessment of Indoor Air Quality in Residential Buildings of New England through Actual Data. Sustainability. 2022;14(2):739. doi: https://doi.org/10.3390/su14020739
9. Dominguez S, Fernandez-Aguera J, Cesteros-García S, Gonzalez-Lezcano R. Bad Air Can Also Kill: Residential Indoor Air Quality and Pollutant Exposure Risk during the COVID-19 Crisis. Environmental Research and Public Health. 2020;17(19):7183. Available from: https://pubmed.ncbi.nlm.nih.gov/33008116/ doi: https://doi.org/10.3390/ijerph17197183
10. Barone G, Buonomano A, Forzano C, Giuzio GF, Palombo A. Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks. Science Direct (ELSEVIER). 2020. Available from: https://www.sciencedirect.com/science/article/pii/S036054422201369X?via%3Dihub doi: https://doi.org/10.1016/j.energy.2022.124466
11. [State building regulations of Ukraine. Buildings and structures. Residential buildings. Main provisions - SBR V.2.2-15:2019]. Kyiv: State Building of Ukraine. 2019. 44 p. Ukrainian.
12. [State building regulations of Ukraine. Buildings and structures. Public buildings and structures. Main provisions - SBR V.2.2-9:2018]. Kyiv: State Building of Ukraine. 2018. 49 p. Ukrainian.
13. Saini J, Dutta M, Marques G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustainable Environment Research. 2020;30:6. Available from: https://www.researchgate.net/publication/338904608_A_comprehensive_review_on_indoor_air_quality_monitoring_systems_for_enhanced_public_health doi: https://doi.org/10.1186/s42834-020-0047-y
14. [Order of the Ministry of Health No. 52 dated 14.01.2020 "On the approval of hygienic regulations on the permissible content of chemical and biological substances in the atmospheric air of populated areas" registered in the Ministry of Justice on 10.02.2020 under No. 156/34439]. Ukrainian. Available from: https://zakononline.com.ua/documents/show/483794___682770
15. [Order of the Ministry of Health No. 1596 of 07/14/2020 "On the approval of hygienic regulations for the permissible content of chemical and biological substances in the air of the working area", registered in the Ministry of Justice on 08/03/2020 under No. 741/35024]. Ukrainian. Available from: https://xn--80aagahqwyibe8an.com/ukrajini-moz-nakaz/nakaz-vid-14072020-1596-pro-zatverdjennya-2020-84151.html
16. [WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Summary of risk assessment]. World Health Organization. 2021. 30 p. Russian. Available from: http://www.who.int/
17. Shrubsole C, Dimitroulopoulou S, Foxall K, Gadeberg B. IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Building and Environment. 2019;165:106382. Available from: https://www.sciencedirect.com/science/article/abs/pii/S036013231930592X doi: https://doi.org/10.1016/j.buildenv.2019.106382
18. USEPA. Indoor Air Quality. 2021. Available from: https://www.epa.gov/report-environment/indoor-air-quality
19. Jagriti Saini, Maitreyee Dutta, Gonçalo Marques. Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review. Environmental Research and Public Health. 2020;17(14):4942. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400061/ doi: https://doi.org/10.3390/ijerph17144942
20. Moreno-Rangel A, Sharpe T, Musau F, McGill G. Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. Journal of Sensors and Sensor Systems. 2018;7(1):373-88. Available from: https://www.researchgate.net/publication/325048894_Field_evaluation_of_a_low-cost_indoor air_quality_monitor_to_quantify_exposure_to_pollutants_in_residential_environments doi: https://doi.org/10.5194/jsss-7-373-2018

ÄËß ÖÈÒÓÂÀÍÍß:
Ìèõ³íà Ë.²., Òóðîñ Î.²., Ïåòðîñÿí À.À., Áðåç³öüêà Í.Â., Ìàðåìóõà Ò.Ï., Äàâèäåíêî Ã.Ì., Êîáçàðåíêî ².Â. Ïîøóê ìåòîäè÷íèõ ïðèéîì³â ã³ã³ºí³÷íî¿ îö³íêè ïîáóòîâèõ ïðèëàä³â ç îçîíóâàííÿ ïîâ³òðÿ ïðèì³ùåíü æèòëîâèõ òà ãðîìàäñüêèõ áóä³âåëü. ó㳺íà íàñåëåíèõ ì³ñöü : çá. íàóê. ïð. Ê., 2023. Âèï. 73. Ñ. 31-8.