ó㳺íà íàñåëåíèõ ì³ñöüISSN: 2707-0441 eISSN: 2707-045X
Âèïóñê 72, 2022   -   Ñòîð³íêè: 68-83
ÏÎÒÅÍÖ²ÉÎÂÀÍÈÉ À˲ÌÅÍÒÀÐÍÈÉ ÉÎÄÎÄÅÔ²ÖÈÒ: ÎÑÎÁËÈÂÎÑÒ² ÂÇÀªÌÎÇÂ’ßÇÊ²Â Ì²Æ ÓËÜÒÐÀÑÒÐÓÊÒÓÐÀÌÈ ÏÐÎÔ²ËÞ ÅÍÅÐÃÅÒÈ×Íί ÌÎÆËÈÂÎÑÒ² ÔÎ˲ÊÓËßÐÍÈÕ ÒÈÐÎÖÈҲ ÏÐÈ ÊÎÐÈÃÓÂÀÍͲ вÇÍÈÌÈ ÄÎÇÀÌÈ ÎÐÃÀͲ×ÍÎÃÎ ÉÎÄÓ
Ðÿáóõà Î.².1
1 Ëüâ³âñüêèé ìåäè÷íèé ³íñòèòóò

ÓÄÊ: 616.441-018.7-008.64-085.326]-06:577.337]-076.4
https://doi.org/10.32402/hygiene2022.72.068

ÀÍÎÒÀÖ²ß:
Ìåòà: äîñë³äèòè îñîáëèâîñò³ âçàºìîçâ’ÿçê³â ì³æ óëüòðàñòðóêòóðàìè åíåðãåòè÷íîãî íàïðÿìó ä³ÿëüíîñò³ ôîë³êóëÿðíèõ òèðîöèò³â ïðè ïðèéìàíí³ îðãàí³÷íîãî éîäó çà óìîâ ïîòåíö³þâàííÿ äåô³öèòó éîäó â ðàö³îí³ àíòèòèðåî¿äíèì çàñîáîì ìåðêàçîë³ë (Thiamazol).
Îá’ºêò ³ ìåòîäè äîñë³äæåííÿ. Îá’ºêòîì äîñë³äæåííÿ áóëè åëåêòðîíîãðàìè ùèòîïîä³áíèõ çàëîçàõ 40 á³ëèõ íåë³í³éíèõ ùóð³â-ñàìö³â ïî÷àòêîâî¿ ìàñè ò³ëà 140-160 ã, éîãî ïðåäìåòîì – çì³íè ìîðôîôóíêö³îíàëüíîãî ñòàíó óëüòðàñòðóêòóð ïðîô³ëþ åíåðãåòè÷íî¿ ìîæëèâîñò³ ôîë³êóëÿðíèõ òèðîöèò³â ïðè ïðèéìàíí³ ìàëî¿ (ì³í³ìàëüíî ä³þ÷î¿), ïîì³ðíî¿ òà âåëèêî¿ äîç îðãàí³÷íîãî éîäó çà óìîâ ìåäèêàìåíòîçíîãî ïîòåíö³þâàííÿ àë³ìåíòàðíîãî éîäîäåô³öèòó ìåðêàçîë³ëîì ó äîç³ 3 ìã/êã ìàñè ò³ëà. Ðîáîòó âèêîíàíî ìåòîäàìè åëåêòðîííî¿ ì³êðîñêîﳿ, íàï³âê³ëüê³ñíîãî àíàë³çó åëåêòðîíîãðàì, âèçíà÷åííÿ ïðîô³ë³â ñïåö³àëüíèõ ìîæëèâîñòåé ãîðìîíîïîåòè÷íèõ êë³òèí, êîðåëÿö³éíîãî àíàë³çó; ³íòåðïðåòàö³þ ðåçóëüòàò³â çä³éñíåíî ç ïîçèö³é öèòîô³ç³îëî㳿.
Ðåçóëüòàòè äîñë³äæåííÿ òà ¿õ îáãîâîðåííÿ. Óñòàíîâëåíî, ùî ïðè ïîòåíö³þâàíí³ àë³ìåíòàðíîãî éîäîäåô³öèòó åíåðãîçàáåçïå÷åííÿ òèðåî¿äíîãî ãîðìîíîïîåçó ïîðóøóºòüñÿ. Îñîáëèâîñò³ êîðèãóâàííÿ îðãàí³÷íèì éîäîì ðîçëàä³â åíåðãîçàáåçïå÷åííÿ ãîðìîíîïîåçó áóëè ïîâ’ÿçàí³ ç ôàêòîì ïðèéìàííÿ éîäó òà éîãî äîçîþ. Çðîñòàííÿ åíåðãåòè÷íîãî ïîòåíö³àëó ôîë³êóëÿðíèõ òèðîöèò³â ï³ä âïëèâîì îðãàí³÷íîãî éîäó ïîëÿãàëî â çá³ëüøåíí³ ê³ëüêîñò³ ì³òîõîíäð³é òà ðèáîñîì íà ¿õí³õ êðèñòàõ, ï³äâèùåíí³ åëåêòðîííî¿ ù³ëüíîñò³ ì³òîõîíäð³àëüíîãî ìàòðèêñó, â³äíîâëåíí³ òîïîãðàô³÷íîãî çâ’ÿçêó ì³æ îñíîâíèìè óëüòðàñòðóêòóðàìè, ùî çàáåçïå÷óþòü ñïåöèô³÷íó ä³ÿëüí³ñòü òèðîöèòó (ì³òîõîíäð³¿, ðåòèêóëÿðíèé åíäîïëàçìàòè÷íèé ðåòèêóëóì, êîìïëåêñ Ãîëüäæ³). Ïðèéìàííÿ íàâ³òü ìàëî¿ ê³ëüêîñò³ îðãàí³÷íîãî éîäó ñïðèÿëî çðîñòàííþ ïîòåíö³éíèõ ìîæëèâîñòåé ôîë³êóëÿðíèõ òèðîöèò³â ùîäî ðåàë³çàö³¿ åíåðãåòè÷íèõ ïðîöåñ³â, ïðîòå ïðè ïðèéìàíí³ éîãî âåëèêî¿ äîçè åíåðãåòè÷íå çàáåçïå÷åííÿ ïðîöåñ³â ãîðìîíîïîåçó áóëî íàéá³ëüøèì.

Âèñíîâêè. Àíàë³ç êîðåëÿö³éíèõ ïîðòðåò³â ïðîô³ëþ åíåðãåòè÷íî¿ ìîæëèâîñò³ ôîë³êóëÿðíèõ òèðîöèò³â º ³íôîðìàòèâíèì çàñîáîì äîñë³äæåííÿ åíåðãîçàáåçïå÷åííÿ ñïåöèô³÷íî¿ ä³ÿëüíîñò³ ùèòîïîä³áíî¿ çàëîçè çà óìîâ íîðìè òà ïàòîëî㳿. Ïðîÿâàìè çðîñòàííÿ åíåðãåòè÷íîãî ïîòåíö³àëó òèðîöèò³â ïðè ïðèéìàíí³ îðãàí³÷íîãî éîäó º çá³ëüøåí³ ê³ëüêîñò³ åëåìåíò³â åíåðãåòè÷íîãî íàïðÿìó òà â³äíîâëåííÿ òîïîãðàô³÷íîãî çâ’ÿçêó ì³æ óëüòðàñòðóêòóðàìè, ùî çàáåçïå÷óþòü ñïåöèô³÷íó ä³ÿëüí³ñòü òèðîöèòó. Ïðè êîðèãóâàíí³ îðãàí³÷íèì éîäîì ìîðôî-ôóíêö³îíàëüíèõ ðîçëàä³â ùèòîïîä³áíî¿ çàëîçè, çóìîâëåíèõ ïîòåíö³þâàííÿì àë³ìåíòàðíîãî éîäîäåô³öèòó àíòèòèðåî¿äíèì ïðåïàðàòîì, åíåðãîçàáåçïå÷åííÿ ôîë³êóëÿðíèõ òèðîöèò³â çðîñòຠâ³äïîâ³äíî äî äîçè ñïîæèòîãî éîäó. Ïðèéìàííÿ âåëèêî¿ äîçè îðãàí³÷íîãî éîäó íàáëèæຠñòàí óëüòðàñòðóêòóð ïðîô³ëþ åíåðãåòè÷íî¿ ìîæëèâîñò³ ôîë³êóëÿðíèõ òèðîöèò³â äî õàðàêòåðèñòèê ³íòàêòíèõ òâàðèí, ùî âêàçóº íà îïòèì³çóâàííÿ åíåðãåòè÷íîãî íàïðÿìó òèðåî¿äíîãî ãîðìîíîïîåçó.

ÊËÞ×β ÑËÎÂÀ:
Ùèòîïîä³áíà çàëîçà, ôîë³êóëÿðíèé òèðîöèò, åíåðãåòè÷í³ ìîæëèâîñò³ ôîë³êóëÿðíèõ òèðîöèò³â, àë³ìåíòàðíèé éîäîäåô³öèò ïîòåíö³éîâàíèé, îðãàí³÷íèé éîä, ìàòåìàòè÷í³ ìåòîäè â ìåäèöèí³, êîðåëÿö³éíèé ïîðòðåò.

˲ÒÅÐÀÒÓÐÀ:
1. Ryabukha OI, Fedorenko VI. Environmental determinants of thyroid pathology. Medicni Perspektivi [Medychni perspektyvy]. 2021;26(3):169-78. doi: https://doi.org/10.26641/2307-0404.2021.3.242253
2. Ryabukha OI. Conceptual approaches to the study of the thyroid gland at different levels of its integration into the body. Endocrinology and Disorders. 2020;4(1). doi: https://doi.org/10.31579/2640-1045/047
3. Ryabukha OI. [The content of ascorbic acid in the liver and adrenal glands of rats during correction of alimentary hypothyrosis by an iodine of a different chemical nature]. Medical and Clinical Chemistry. 2018;20(1):51-58. Ukrainian. doi: https://doi.org/10.11603/mcch.2410-681X.2018.v0.i1.8841
4. Ryabukha O, Greguš ml M. Correlation analysis as a thyroid gland, adrenal glands, and liver relationship tool for correcting hypothyroidism with organic and inorganic iodine. Procedia Comput Sci. 2019;160:598-603. doi: https://doi.org/10.1016/j.procs.2019.11.041
5. Ryabukha O². [Body weight as an indicator of the organism’s general condition while receiving iodine of organic and inorganic chemical origin under conditions of the optimal iodine supplementing]. Bulletin of Problems in Biology and Medicine. 2018;1;1(142):97-102. Ukrainian. doi: https://doi.org/10.29254/2077-4214-2018-1-1-142-97-102
6. Ryabukha O, Dronyuk I. Applying regression analysis to study the interdependence of thyroid, adrenal glands, liver, and body weight in hypothyroidism and hyperthyroidism. CEUR Workshop Proc. 2019;2488:155-164. Available from: http://ceur-ws.org/Vol-2488/paper13.PDF
7. Mughal BB, Fini JB, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocr Connect. 2018;7(4):R160-R186. doi: https://doi.org/10.1530/EC-18-0029
8. Chukur OO. [Dynamics of morbidity and expansion of pathology of the thyroid gland among adult population of Ukraine]. Visnyk Sotsialnoi Hihiieny ta Orhanizatsii Okhorony Zdorovia Ukrainy. 2018;4:19-25. Ukrainian. doi: https://doi.org/10.11603/1681-2786.2018.4.10020
9. Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301-16. doi: https://doi.org/10.1038/nrendo.2018.18
10. Tkachuk VV, Velichko VI, Tkachuk IV. [Iodine deficiency and iodine deficiency disorders]. The Practitioner. 2021 Oct 20; 3:45-50. Ukrainian. Available from: https://plr.com.ua/index.php/journal/article/view/656
11. Cherella CE, Wassner AJ. Congenital hypothyroidism: insights into pathogenesis and treatment. Int J Pediatr Endocrinol. 2017;2017:11. doi: https://doi.org/10.1186/s13633-017-0051-0
12. Kosmynina NS, Gnateyko OZ, Pechenyk SO, Chaykovska GS. [Impact of ecologically unfriendly environment on the formation of thyroid pathology in children against iodine deficiency]. Child’s Health. 2014;1:45-8. Ukrainian. doi: https://doi.org/10.22141/2224-0551.1.52.2014.75605
13. Matasar IT, Kravchenko VI, Petrishchenko LM, Vodopyanov VM. [Socio-ecological and medical problems of iodine deficiency among the population of Ukraine]. One Health and Nutrition Problems of Ukraine. 2021;1:82-95. Ukrainian. doi: https://doi.org/10.33273/2663-9726-2021-54-1-80-93
14. Antonenko AM, Korshun MM. [Environmental factors as a reason of thyroid gland pathology (analytical review, the first report)]. Environment & Health. 2016;3:74-9. Ukrainian. doi: https://doi.org/10.32402/dovkil2016.03.074
15. Antonenko AM, Korshun MM. [Environmental factors as the reasons of thyroid gland pathology risk (analytical literary review, the second report)]. Environment & Health. 2017;1:59-64. Ukrainian. doi: https://doi.org/10.32402/dovkil2017.01.059
16. Babiker A, Alawi A, Al Atawi M, Al Alwan I. The role of micronutrients in thyroid dysfunction. Sudan J Paediatr. 2020;20(1):13-9. doi: https://doi.org/10.24911/SJP.106-1587138942
17. Rezaei M, Javadmoosavi SY, Mansouri B, Azadi NA, Mehrpour O, Nakhaee S. Thyroid dysfunction: how concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ Sci Pollut Res. 2019;26:35787-96. doi: https://doi.org/10.1007/s11356-019-06632-7
18. Êravchenko VI. [Chornobyl accident and iodine deficiency as risk factors of thyroid pathology in population of the affected regions of Ukraine]. The International Journal of Endocrinology. 2016;2:13-20. Ukrainian. Available from: http://nbuv.gov.ua/UJRN/Mezh_2016_2_4
19. Rai G, Kumar A, Mahobiya P. The effect of radiation on thyroid gland. International Journal of Biology Research. 2018;3(1):217-22. Available from: https://www.researchgate.net/publication/323335927
20. Kunt H, Şentürk İ, Gönül Y, Korkmaz M, Ahsen A, Hazman Ö, et al. Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers. OncoTargets Ther. 2016;9:745-54. doi: https://doi.org/10.2147/OTT.S94374
21. Asl JF, Larijani B, Zakerkish M, Rahim F, Shirbandi K, Akbari R. The possible global hazard of cell phone radiation on thyroid cells and hormones: a systematic review of evidences. Environ Sci Pollut Res. 2019;26:18017-31. doi: https://doi.org/10.1007/s11356-019-05096-z
22. Duntas LH, Stathatos N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Endocrine and Metabolic Disorders. 2015;16(4):311-18. doi: https://doi.org/10.1007/s11154-016-9331-x
23. Oliveira KJ, Chiamolera MI, Giannocco G, Pazos-Moura CC, Ortiga-Carvalho TM. Thyroid function disruptors: from nature to chemicals. Journal of Molecular Endocrinology. 2019;62(1):R1-R19. doi: https://doi.org/10.1530/JME-18-0081
24. Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. Am J Epidemiol. 2013;178(5):701-13. doi: https://doi.org/10.1093/aje/kwt141
25. Moriyama K, Tagami T, Akamizu T, Usui T, Saljo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002;87:5185-90. doi: https://doi.org/10.1210/jc.2002-020209
26. Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132-55. doi: https://doi.org/10.1016/j.reprotox.2013.08.008
27. Huang PC, Tsai CH, Liang WY, Li SS, Huang HB, Kuo PL. Early phthalates exposure in pregnant women is associated with alteration of thyroid hormones. PLoS One. 2016;11(7):e0159398. doi: https://doi.org/10.1371/journal pone.0159398
28. Lopez-Espinosa M-J, Mondal D, Armstrong B, Bloom MS, Fletcher T. Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect. 2012;120(7):1036-41. doi: https://doi.org/10.1289/ehp.1104370
29. Jayaraj R., Megha P., Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol. 2016 Dec;9(3-4):90-100. doi: https://doi.org/10.1515/intox-2016-0012
30. Leemans M, Couderq S, Demeneix B, Fini JB. Pesticides with potential thyroid hormone-disrupting effects: A review of recent data. Front Endocrinol (Lausanne). 2019;10:743. doi: https://doi.org/10.3389/fendo.2019.00743
31. Mulder TA, van den Dries MA, Korevaar TI, Ferguson KK, Peeters RP, Tiemeier H. Organophosphate pesticides exposure in pregnant women and maternal and cord blood thyroid hormone concentrations. Environment International. 2019;132:105124. doi: https://doi.org/10.1016/j.envint.2019.105124
32. Demeneix BA. Evidence for prenatal exposure to thyroid disruptors and adverse effects on brain development. Eur Thyroid J. 2019; 8: 283-92. doi: https://doi.org/10.1159/000504668
33. Waugh DT. Fluoride exposure induces inhibition of sodium/iodide symporter (NIS) contributing to impaired iodine absorption and iodine deficiency: Molecular mechanisms of inhibition and implications for Public Health. Int J Environ Res Public Health. 2019;16:1086. doi: https://doi.org/10.3390/ijerph16061086
34. Bezrukov OF. [Possibilities and prospectives of iodine insufficiency prophylaxis (a review)]. Crimean Journal of Internal Diseases. 2011;2:4-7. Russian. Available from: http://crimtj.ru/Journal.files/17-2011-2/LR-Bezrukov-IodineInsufficiency.pdf
35. Lebedynets V, Buriachenko L, Bagrii L, Yaroshik U. [The scientific search for the over coming of iodine in Ukraine]. Tovaroznavchiy Visnik. 2017;1(10):14-22. Ukrainian. Available from: http://tovvisnik.lutsk-ntu.com.ua/index.php/tovvisnik/article/view/72
36. Kravchenko VM, Orlova VO, Laryanovska YuB, Sakharova TS. [Investigation of Laminaria aqueous extract effect on thyroid gland morphological status in rats with experimental hypothyroidism induced by sodium perchlorate]. Ukrayinskyy Biofarmatsevtychnyy Zhurnal. 2017;6:50-5. Ukrainian. doi: https://doi.org/10.24959/ubphj.17.144
37. Korzun VN, Vorontsova TO, Antoniuk IYu. [Ecology and diseases of thyroid gland]. Êyiv: Medinform; 2018;(Chapter 10, Study of the Black Sea algae influence on thyroid function and prevention of iodine deficiency):607-22. Ukrainian.
38. Ryabukha OI. [To the problem of application in hypothyrosis inorganic and organic iodine (review)]. Actual Problems of Transport Medicine. 2018;2:7-21. Ukrainian. doi: https://doi.org/10.5281/zenodo.1319531
39. Ryabukha OI. [Ultrastructural features of the follicular thyrocytes’ synthetic activity while taking organic iodine under conditions of alimentary iodine deficiency]. Bulletin of Problems in Biology and Medicine. 2017;4,2(140):134-9. Ukrainian. Available from: https://vpbm.com.ua/ua/vipusk-4-tom-2-(140),-2017/9557
40. Ryabukha O. COVID-19 pandemic encourages to deepen the study of the thyroid gland: Correlation portraits as a means of research in different directions of follicular thyrocytes activities. SSP Modern Pharmacy and Medicine. 2022;2(1):1-21. doi: https://doi.org/10.52914/apmp.v3i1.39
41. Uurtio V, Monteiro JM, Kandola J, Shawe-Taylor J, Fernandez-Reyes D, Rousu J. A tutorial on canonical correlation methods. ACM Computing Surveys. 2018;50(6):1-33. doi: https://doi.org/10.1145/3136624
42. Ryabukha O, Dronyuk I. The portraits creating method by correlation analysis of hormone-producing cells data. CEUR Workshop Proc. 2018;2255:135-145. Available from: http://ceur-ws.org/Vol-2255/paper13.pdf
43. Khan YS, Farhana A. Histology, Thyroid Gland. [Updated 2021 Dec 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551659/
44. Caplan MJ. Functional Organization of the Cell. In: Boron WF, Boulpaep EL, editors. Medical Physiology. 3-rd ed. Philadelphia: Elsevier; 2016:8-46.
45. Petrovici A, Lupulescu A. Ultrastructure of the Thyroid Gland. Basel: Karger; 1968. 168 p.
46. Ryabukha OI. Substantiation of conceptual apparatus for mathematical studies on the hormone-producing cell activity. Bulletin of problems in biology and medicine. 2018;3,1(145):234-7. Ukrainian. doi: https://doi.org/10.29254/2077-4214-2018-3-145-234-237
47. Ryabukha O, Dronyuk I. Modern àpproaches to the applying of mathematical methods in the analysis of the transport direction of follicular thyrocytes. CEUR Workshop Proc. 2021;3038:302-16. Available from: http://ceur-ws.org/Vol-3038/paper19.pdf
48. Gordiyenko VM, Kozyritskiy VG. [Ultrastructure of the Endocrine System Glands]. Êyiv: Zdorovya; 1978. 288 ð. Russian.

ÄËß ÖÈÒÓÂÀÍÍß:
Ðÿáóõà Î.². Ïîòåíö³éîâàíèé àë³ìåíòàðíèé éîäîäåô³öèò: îñîáëèâîñò³ âçàºìîçâ’ÿçê³â ì³æ óëüòðàñòðóêòóðàìè ïðîô³ëþ åíåðãåòè÷íî¿ ìîæëèâîñò³ ôîë³êóëÿðíèõ òèðîöèò³â ïðè êîðèãóâàíí³ ð³çíèìè äîçàìè îðãàí³÷íîãî éîäó. ó㳺íà íàñåëåíèõ ì³ñöü : çá. íàóê. ïð. Ê., 2022. Âèï. 72. Ñ. 68-83.