ó㳺íà íàñåëåíèõ ì³ñöüISSN: 2707-0441 eISSN: 2707-045X
Âèïóñê 74, 2024   -   Ñòîð³íêè: 75-91
²ÎͲÇÓÞ×Å ÂÈÏÐÎ̲ÍÅÍÍß ßÊ ×ÈÍÍÈÊ ÐÈÇÈÊÓ ÂÈÍÈÊÍÅÍÍß ÏÀÒÎËÎò¯ ÙÈÒÎÏÎIJÁÍί ÇÀËÎÇÈ (îãëÿä ë³òåðàòóðè)
Ðÿáóõà Î.².1, Ôåäîðåíêî Â.².2
1 ÂÈÙÈÉ ÏÐÈÂÀÒÍÈÉ ÍÀÂ×ÀËÜÍÈÉ ÇÀÊËÀÄ «ËܲÂÑÜÊÈÉ ÌÅÄÈ×ÍÈÉ ÓͲÂÅÐÑÈÒÅÒ»
2 ËܲÂÑÜÊÈÉ ÍÀÖ²ÎÍÀËÜÍÈÉ ÌÅÄÈ×ÍÈÉ ÓͲÂÅÐÑÈÒÅÒ ²ÌÅͲ ÄÀÍÈËÀ ÃÀËÈÖÜÊÎÃÎ

ÓÄÊ: ÓÄÊ 616.441:614.876]-038(048.8)
https://doi.org/10.32402/hygiene2024.74.075

ÀÍÎÒÀÖ²ß:
Ìåòà äîñë³äæåííÿ. Òåîðåòè÷íå óçàãàëüíåííÿ äàíèõ íàóêîâèõ ïóáë³êàö³é ç ïèòàííÿ âïëèâó ³îí³çóþ÷îãî âèïðîì³íåííÿ íà ñòàí ùèòîïîä³áíî¿ çàëîçè.
Îá’ºêò ³ ìåòîäè äîñë³äæåííÿ. Àíàë³òè÷íèé îãëÿä çàðóá³æíèõ òà â³ò÷èçíÿíèõ íàóêîâèõ ïðàöü ç âèêîðèñòàííÿì íàóêîìåòðè÷íèõ áàç äàíèõ PubMed, Google Scholar, Scopus/WoS òà ³íôîðìàö³éíîãî ðåñóðñó “Íàóêîâà ïåð³îäèêà Óêðà¿íè”.
Ðåçóëüòàòè äîñë³äæåííÿ òà ¿õ îáãîâîðåííÿ. Çà óìîâ íåñïðèÿòëèâîãî òà ìàëî êîíòðîëüîâàíîãî âïëèâó ô³çè÷íèõ ÷èííèê³â äîâê³ëëÿ æèòòºä³ÿëüí³ñòü îðãàí³çìó â³äáóâàºòüñÿ íà òë³ ìîðôîôóíêö³îíàëüíèõ çì³í ó ùèòîïîä³áí³é çàëîç³. Îñíîâíèì ô³çè÷íèì ÷èííèêîì, ÿêèé ñóòòºâî ïîðóøóº ñòàí çàëîçè, º ïðèðîäíå òà øòó÷íå ³îí³çóþ÷å âèïðîì³íåííÿ.  îïðàöüîâàíèõ ïóáë³êàö³ÿõ áóëî ïðîàíàë³çîâàíî îñîáëèâîñò³ âïëèâó ðåíòãåí³âñüêîãî òà ãàìà- âèïðîì³íåííÿ íà ïðîöåñè êàíöåðîãåíåçó, ïèòàííÿ ðàä³àö³éíî-³íäóêîâàíèõ óðàæåíü ùèòîïîä³áíî¿ çàëîçè. Ïðèâåðíóëè óâàãó äîñë³äæåííÿ âïëèâó ³îí³çóþ÷îãî âèïðîì³íåííÿ íà ìåäè÷íèõ ïðàö³âíèê³â ï³ä ÷àñ âèêîíàííÿ ïðîôåñ³éíèõ îáîâ’ÿçê³â òà íà ïàö³ºíò³â ï³ä ÷àñ ä³àãíîñòè÷íèõ â³çóàë³çàö³é, äîñë³äæåííÿ íàñë³äê³â ³îí³çóþ÷îãî âèïðîì³íåííÿ íà çäîðîâ’ÿ íàñåëåííÿ ï³ñëÿ àâà𳿠íà ×îðíîáèëüñüê³é ÀÅÑ òà ÀÅÑ Ôóêóñ³ìà-1. Õàðàêòåðèñòèêà ³îí³çóþ÷èõ ÷èííèê³â, çäàòíèõ óøêîäæóâàòè ùèòîïîä³áíó çàëîçó, âèâ÷åííÿ âïëèâó íà íå¿ ³îí³çóþ÷îãî âèïðîì³íåííÿ òà ³í³ö³þâàííÿ â í³é ïóõëèííèõ ïðîöåñ³â, ¿õ çàëåæí³ñòü â³ä äîçè ðàä³àö³¿, òðèâàëîñò³ âïëèâó, ñòàò³ òà â³êó, â ÿêîìó áóëî îòðèìàíî ðàä³àö³éíó òðàâìó, ïîêàçàëè, ùî îñîáëèâî íåáåçïå÷íèìè º ðàä³îíóêë³äè, ÿê³ ïîòðàïëÿþòü â îðãàí³çì âíàñë³äîê òåõíîãåííèõ àâàð³é íà àòîìíèõ ñòàíö³ÿõ.
Âèñíîâêè. ²îí³çóþ÷å âèïðîì³íåííÿ çäàòíå ñóòòºâî ïîðóøóâàòè ñòàí ùèòîïîä³áíî¿ çàëîçè. Îñîáëèâî íåáåçïå÷íèì º éîãî âïëèâ ó äèòÿ÷îìó òà ï³äë³òêîâîìó â³ö³. Ùèòîïîä³áíà çàëîçà ñåðåä ðàä³î÷óòëèâèõ îðãàí³â íàáóâຠñòàòóñó âàæëèâî¿ ì³øåí³, à ð³âåíü òèðåî¿äíî¿ ïàòîëî㳿 ñòຠ³íôîðìàòèâíèì ìàðêåðîì åêîëîã³÷íîãî íåáëàãîïîëó÷÷ÿ. Çàçíà÷åíå ïåðåâîäèòü ïðîáëåìó òèðåî¿äíî¿ ïàòîëî㳿 ³ç ñóòî ìåäè÷íî¿ â ðîçðÿä åêîëîã³÷íî¿ òà ñîö³àëüíî çíà÷èìî¿.

ÊËÞ×β ÑËÎÂÀ:
²îí³çóþ÷å âèïðîì³íåííÿ, íèçüêà äîçà îïðîì³íåííÿ, çàõâîðþâàííÿ ùèòîïîä³áíî¿ çàëîçè, íîâîóòâîðåííÿ ùèòîïîä³áíî¿ çàëîçè, ìåäè÷í³ ïðàö³âíèêè, ä³àãíîñòè÷íà â³çóàë³çàö³ÿ.

˲ÒÅÐÀÒÓÐÀ:
1. Korzun VN, Vorontsova TO, Antoniuk IYu. [Ecology and diseases of thyroid gland]. Êyiv: Medinform; 2018. 741 p. Ukrainian. Available from: https://library.gov.ua/ekologiya-i-zahvoryuvannya-shhytopodibnoyi-zalozy/
2. Ryabukha O². [To the problem of application in hypothyrosis inorganic and organic iodine (review)]. Actual Problems of Transport Medicine. 2018;2(52):7-21. Ukrainian. doi: https://doi.org/10.5281/zenodo.1319531
3. Ryabukha O². [Some aspects of thyroid impact on the body state in normal and pathology condition]. Actual Problems of the Modern Medicine: Bulletin of Ukrainian Medical Stomatological Academy. 2018;18(3):324-30. Ukrainian. Available from: http://nbuv.gov.ua/UJRN/apsm_2018_18_3_69
4. Ryabukha OI. [To the structural and functional preconditions of the emergence of thyroid pathology (literature review)]. Achievements of Clinical and Experimental Medicine. 2018;2:16-24. Ukrainian. doi: http://doi.org/10.11603/1811-2471.2018.v0.i2.8903
5. Zhang X, Wang X, Hu H, Qu H, Xu Y, Li Q. Prevalence and trends of thyroid disease among adults, 1999-2018. Endocr Pract. 2023;29(11):875-80. doi: https://doi.org/10.1016/j.eprac.2023.08.006
6. The Lancet. Thyroid disease – more research needed. Lancet. 2012;379(9821):1076. doi: https://doi.org/10.1016/S0140-6736(12)60445-0
7. Tkachenko VI, Maksymets YaA, Vydyborets NV, Kovalenko OF. [Analysis of the prevalence and morbidity of thyroid pathology among the population of Kyiv region and Ukraine for 2007–2017]. The International Journal of Endocrinology (Ukraine). 2018;14(3):279-84. Ukrainian. doi: https://doi.org/10.22141/2224-0721.14.3.2018.136426
8. Antonenko AM, Korshun MM. [Environmental factors as a reason of thyroid gland pathology (analytical review, the first report)]. Environment & Health. 2016;3:74-9. Ukrainian. doi: https://doi.org/10.32402/dovkil2016.03.074
9. Yakovtsova II, Kotyk EA, Dolgaya OV, Ivakhno IV. [Ñlinical and morphological analysis of operational material of thyroid diseases]. Problems of Uninterrupted Medical Training and Science. 2013;2:57-60. Russian. Available from: http://nbuv.gov.ua/UJRN/Psmno_2013_2_16
10. Zelinska NB, Rudenko NG, Krushinska ZG. [Diseases of endocrine system in children of Ukraine in 2017: indicators of prevalence and incidence and their dynamics]. Ukrainian Journal of Pediatric Endocrinology. 2018;2:5-15. Ukrainian. doi: : https://doi.org/10.30978/DE2018-2-6
11. Mendoza A, Hollenberg AN. New insights into thyroid hormone action. Pharmacology and Òherapeutics. 2017;173:135-45. doi: https://doi.org/10.1016/j.pharmthera.2017.02.012
12. Shapovalov VV (Jr), Shapovalov VV, Rogozhnikova OV, Shapovalova VÎ. [Government principles regarding the improvement of medical provision on regional level for citizens affected by the Chernobyl disaster based on the pharmaceutical law]. Pharmacom. 2016;1:79-84. Ukrainian. Available from: https://sphu.org/wp-content/uploads/2017/01/farmacom_1_2016.pdf
13. Shapovalov V, Zbrozhek S, Gudzenko A, Shapovalova V, Shapovalov V. Organizational and legal analysis of the pharmaceutical provision for the most common diseases of society. International Journal of Pharmaceutical Sciences Review and Research. 2018;51(1):118-24. Available from: http://globalresearchonline.net/journalcontents/v51-1/18.pdf
14. Ivanishyn-Hayduchok L, Shapovalova V, Shapovalov V. ICD-11: Organizational and legal, medical and pharmaceutical, social and economic issues of implementation of the Program of State Guarantees of Medical Care in 2022 in Ukraine, based on the fundamental principles of the European Union. SSP Modern Pharmacy and Medicine. 2022; 2(2):1-14. doi: http://doi.org/10.53933/sspmpm.v2i2.53
15. Wikipedia. Ionizing radiation. Available from: https://en.wikipedia.org/wiki/Ionizing_radiation
16. WHO. Ionizing radiation and health effects. World Health Organization; 2023 Jul 27. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/ionizing-radiation-and-health-effects
17. IARC Working Group on the Evaluation of carcinogenic risks to humans. Radiation. Lyon (FR): International Agency for Research on Cancer; 2012. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100D) X- and ã-radiation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK304365/
18. National Toxicology Program. 15th Report on Carcinogens. Research Triangle Park (NC): National Toxicology Program; 2021 Dec 21. Ionizing Radiation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK590918/
19. [Order of the Ministry of Health of Ukraine No. 1054 of 06/20/2022 “On the approval of Hygienic standard “List of substances, products, production processes, household and natural factors that are carcinogenic to humans”, registered in the Ministry of Justice of Ukraine on 08/11/2022 under No. 910/38246]. Ukrainian. Available from: https://zakon.rada.gov.ua/laws/show/z0910-22#doc
20. American Cancer Society. X-rays, gamma rays, and cancer risk. American Cancer Society; 2022 Nov 10. Available from: https://www.cancer.org/cancer/risk-prevention/radiation-exposure/x-rays-gamma-rays.html
21. Domina E. The specificities of radiation carcinogenesis. Journal of Science. Lyon. 2020;11:8-12. Available from: https://www.joslyon.com/wp-content/uploads/2020/09/Lyon_11_2.pdf
22. Watson GE, Pocock DA, Papworth D, Lorimore SA, Wright EG. In vivo chromosomal instability and transmissible aberrations in the progeny of haemopoietic stem cells induced by high- and low-LET radiations. International Journal of Radiation Biology. 2001;77(4):409-17. doi: https://doi.org/10.1080/09553000010028476
23. Domina EA. [Radiogenic cancer: epidemiology and primary prevention]. Kyiv: Naukova Dumka; 2016. 196 p. Russian. Available from: https://library.gov.ua/radyogennyj-rak-epydemyologyya-y-pervychnaya-profylaktyka/
24. Prise KM, Belyakov OV, Newman HC, Patel S, Schettino G, Folkard M, et al. Non-targeted effects of radiation: bystander responses in cell and tissue models. Radiation Protection Dosimetry. 2002;99(1-4):223-6. doi: https://doi.org/10.1093/oxfordjournals.rpd.a006768
25. Ryabukha OI, Fedorenko VI. Environmental determinants of thyroid pathology. Medicni Ðerspectiv³. 2021;26(3):169-78. doi: https://doi.org/10.26641/2307-0404.2021.3.242253
26. Bayadsi H, Brink PVD, Erlandsson M, Gudbjornsdottir S, Sebraoui S, Koorem S, et al. The correlation between small papillary thyroid cancers and gamma radionuclides Cs-137, Th-232, U-238 and K-40 using spatially-explicit, register-based methods. Spatial and Spatio-Temporal Epidemiology. 2023;47:100618. doi: https://doi.org/10.1016/j.sste.2023.100618
27. Prokhorova EM, Atamanyuk NP, Klepko AV, Vatlitsova OS, Pleskach OYa, Lytvynets OM, et al. [Peculiarities of hormonal and metabolic changes in offspring of the first generation from rats internally exposed by 131I]. ScienceRise. Biological Science. 2016;2:25-33. Ukrainian. doi: https://doi.org/10.15587/2519-8025.2016.81009
28. Lee W, Chiacchierini RP, Shleien B, Telles NC. Thyroid tumors following 131I or localized X irradiation to the thyroid and pituitary glands in rats. Radiation Research. 1982;92(2):307-19. doi: https://doi.org/10.2307/3576007
29. De Giorgi A, Bongiovanni A, De Sio S, Sernia S, Adamo G, La Torre G. Assessment of the impact of low-dose ionizing radiation exposure on health care workers: A study of Methods Used from a Scoping Review. Health Physics. 2023;125(2):102-8. doi: https://doi.org/10.1097/HP.0000000000001693
30. Tu L, Wang SL, Dong Q, Song HY, Li XT, Tan CP, et al. [Effect of low-dose ionizing radiation exposure on thyroid function in a medical occupational population]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2018;36(2):91-4. Chinese. doi: https://doi.org/10.3760/cma.j.issn.1001-9391.2018.02.003
31. Wong YS, Cheng YY, Cheng TJ, Huang CC, Yeh JJ, Guo HR. The relationship between occupational exposure to low-dose ionizing radiation and changes in thyroid hormones in hospital workers. Epidemiology. 2019;30 Suppl 1:S32-S38. doi: https://doi.org/10.1097/EDE.0000000000001004
32. Guo QS, Ruan P, Huang WX, Huang DZ, Qiu JC. Occupational radiation exposure and changes in thyroid hormones in a cohort of chinese medical radiation workers. Biomedical and Environmental Sciences. 2021;34(4):282-9. doi: https://doi.org/10.3967/bes2021.037
33. Cioffi DL, Fontana L, Leso V, Dolce P, Vitale R, Vetrani I, et al. Low dose ionizing radiation exposure and risk of thyroid functional alterations in healthcare workers. European Journal of Radiology. 2020;132:109279. doi: https://doi.org/10.1016/j.ejrad.2020.109279
34. Lu BF, Yin WJ, Xu T, Li NN, Yi GL. [Correlation analysis of low-dose X-ray ionizing radiation and thyroid function in radiation workers]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2022;40(10):733-736. Chinese. doi: https://doi.org/10.3760/cma.j.cn121094-20211105-00545
35. El-Benhawy SA, Fahmy EI, Mahdy SM, Khedr GH, Sarhan AS, Nafady MH, et al. Assessment of thyroid gland hormones and ultrasonographic abnormalities in medical staff occupationally exposed to ionizing radiation. BMC Endocrine Disorders. 2022;22(1):287. doi: https://doi.org/10.1186/s12902-022-01196-z
36. Sernia S, Bongiovanni A, De Giorgi A, Cafolla A, De Sio S, La Torre G. Thyroid parameters variations in healthcare workers and students exposed to low-dose ionizing radiations. Giornale Italiano di Medicina del Lavoro ed Ergonomia. 2022;44(3):338-46. Available from: https://europepmc.org/article/MED/36622821
37. Lee WJ, Preston DL, Cha ES, Ko S, Lim H. Thyroid cancer risks among medical radiation workers in South Korea, 1996-2015. Environmental Health. 2019;18(1):19. doi: https://doi.org/10.1186/s12940-019-0460-z
38. Linet MS, Slovis TL, Miller DL, Kleinerman R, Lee C, Rajaraman P, et al. Cancer risks associated with external radiation from diagnostic imaging procedures. CA: a Cancer Journal for Clinicians. 2012;62(2):75-100. doi: https://doi.org/10.3322/caac.21132
39. Veiga LH, Holmberg E, Anderson H, Pottern L, Sadetzki S, Adams MJ, et al. Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiation Research. 2016;185(5):473-84. doi: https://doi.org/10.1667/RR14213.1
40. Lubin JH, Adams MJ, Shore R, Holmberg E, Schneider AB, Hawkins MM, et al. Thyroid cancer following childhood low-dose radiation exposure: A pooled analysis of nine cohorts. The Journal of Clinical Endocrinology and Metabolism. 2017;102(7):2575-83. doi: https://doi.org/10.1210/jc.2016-3529
41. Han MA, Kim JH. Diagnostic X-ray exposure and thyroid cancer risk: Systematic review and meta-analysis. Thyroid. 2018;28(2):220-8. doi: https://doi.org/10.1089/thy.2017.0159
42. Hong JY, Han K, Jung JH, Kim JS. Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea. JAMA Network Open. 2019;2(9):e1910584. doi: https://doi.org/10.1001/jamanetworkopen.2019.10584
43. Memon A, Rogers I, Paudyal P, Sundin J. Dental X-rays and the risk of thyroid cancer and meningioma: A systematic review and meta-analysis of current epidemiological evidence. Thyroid. 2019;29(11):1572-93. doi: https://doi.org/10.1089/thy.2019.0105
44. Bogdanova T, Zurnadzhi L, Burko S, Degtyareva T, Guliy T, Saenko V, et al. [Morphology of thyroid cancer after the CNNP accident]. Endokrynologia. 2014;19(4):274. Russian. Available from: https://endokrynologia.com.ua/index.php/journal/issue/view/4
45. Êravchenko VI. [Chornobyl accident and iodine deficiency as risk factors of thyroid pathology in population of the affected regions of Ukraine]. The International Journal of Endocrinology (Ukraine). 2016;2:13-20. Ukrainian. Available from: http://nbuv.gov.ua/UJRN/Mezh_2016_2_4
46. Voronenko VV, Yakimets VM, Pechyborshch VP, Pechyborshch OV, Yakimets VV, Voloshyn VD. [Thyroid cancer in the dynamics of a thirty-year follow-up after the accident at the Chernobyl NPP]. Ukraine. Nation’s Health. 2018;1:7-17. Ukrainian. Available from: http://nbuv.gov.ua/UJRN/Uzn_2018_1_3
47. Drozdovitch V. Radiation exposure to the thyroid after the Chernobyl accident. Frontiers in Endocrinology. 2021;11:569041. doi: https://doi.org/10.3389/fendo.2020.569041
48. Sehestedt T, Knudsen N, Perrild H, Johansen C. Iodine intake and incidence of thyroid cancer in Denmark. Clinical Endocrinology (Oxford). 2006;65(2):229-33. doi: https://doi.org/10.1111/j.1365-2265.2006.02580.x
49. Tronko M, Mabuchi K, Bogdanova T, Hatch M, Likhtarev I, Bouville A, et al. Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine-US Thyroid Project). Journal of Radiological Protection: Official Journal of the Society for Radiological Protection. 2012;32(1):65-9. doi: https://doi.org/10.1088/0952-4746/32/1/N65
50. Grinevich YuA, Chumak AA, editors. [Thyroid cancer. Epidemiological, radiobiological and immunoendocrinological aspects with the rationale for immunotherapy]. Kyiv: Zdorov’ya; 2011. 208 p. Russian. Available from: https://novakniga.com.ua/ua/p1850038192-yua-grinevich-chumak.html
51. Kim E, Kurihara O, Kunishima N, Momose T, Ishikawa T, Akashi M. Internal thyroid doses to Fukushima residents-estimation and issues remaining. Journal of Radiation Research. 2016;57(Suppl 1):i118-i126. doi: https://doi.org/10.1093/jrr/rrw061
52. Kravchenko VI, Postol SV. [The dynamics incidence of thyroid pathology in Ukraine]. The International Journal of Endocrinology (Ukraine). 2011;3:26-31. Ukrainian. Available from: https://cyberleninka.ru/article/n/dinamika-zahvoryuvanosti-na-patologiyu-schitopodibnoyi-zalozi-v-ukrayini
53. Mamenko MYe. [Prevention of iodine deficiency disorders: what should know and can do a pediatrician and general practitioner? (Clinical practice guideline)]. Sovremennaya Pediatriya. 2017;2:8-16. Ukrainian. doi: https://doi.org/10.15574/SP.2017.82.8
54. Òkachuk V, Velichko V, Tkachuk I. [Iodine deficiency and iodine deficiency disorders]. The Prañtitioner. 2021;10(3):45-50. Ukrainian. Available from: https://plr.com.ua/index.php/journal/article/view/656
55. Kopylenko OL, Chehun VF, Domina EA. [Challenges of radiation disasters: lessons from Chernobyl]. National Commission for Radiation Protection of Ukraine; 2021. 20 p. Ukrainian. Available from: https://nkrzu.gov.ua/dial/pov/zah/1566-nkrzu-ta-komitet-z-pytan-ekolohichnoi-polityky-ta-pryrodokorystuvannia-prydiliaiut-uvahu-problemnym-pytanniamy-ta-perspektyvam-rozvytku-zony-vidchuzhennia
56. Arzhanov IYu, Buniatov MR, Ushakovà GO. [The thyroid status of a conditionally healthy adult population of Prydniprovia]. Regulatory Mechanisms in Biosystems. 2017;8(4):554-8. Ukrainian. doi: https://doi.org/10.15421/021785
57. Chukur OO. [Dynamics of morbidity and expansion of pathology of the thyroid gland among adult population of Ukraine]. Visnyk Sotsial’noi Hihiieny ta Arhanizatsii Okhorony Zdorovia Ukrainy. 2018;4:19-25. Ukrainian. doi: https://doi.org/10.11603/1681-2786.2018.4.10020
58. Kamyshna ²², Pavlovich LB, Maslyanko VA, Chornenka ZhA. Epidemiological assessment of dynamics of the prevalence and incidence of the thyroid gland diseases in Ukraine and Chernivtsi region. Ñlinical and Experimental Pathology. 2021;20(3):75-81. doi: https://doi.org/10.24061/1727-4338.XX.3.77.2021.11
59. Rybakov S. [Medullary thyroid cancer: epidemiology]. International Journal of Endocrinology (Ukraine). 2023;19(4):306-11. Ukrainian. doi: https://doi.org/10.22141/2224-0721.19.4.2023.1291
60. Ron E. Thyroid cancer incidence among people living in areas contaminated by radiation from the Chernobyl accident. Health Physics. 2007;93(5):502-11.
61. Zelinska NB, Rudenko NG, Globa EV, Rudenko OV. [Diseases of the endocrine system in children in Ukraine and specialized care to pediatric patients in the year 2021]. Ukrainian Journal of Pediatric Endocrinology. 2022;1-2:6-16. Ukrainian. doi: http://doi.org/10.30978/UJPE2022-1-2-6
62. Piddubna A. [The role of Chernobyl accident in the development of thyroid pathology]. [Internet]. Bukovinian State Medical University; 2019 Apr 27. Ukrainian. Available from: https://www.bsmu.edu.ua/blog/rol-avari-na-chaes-u-rozvitku-patologi-shhitopodibno-zalozi/
63. Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology. 2016;27(3):316-22. doi: https://doi.org/10.1097/EDE.0000000000000385
64. Yamashita S, Suzuki Sh, Suzuki S, Shimura H, Saenko V. Lessons from Fukushima: Latest findings of thyroid cancer after the Fukushima Nuclear Power Plant accident. Thyroid. 2018;28(1):11-22. doi: https://doi.org/10.1089/thy.2017.0283
65. Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV, et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. British Journal of Cancer. 2011;104(1):181-7. doi: https://doi.org/10.1038/sj.bjc.6605967
66. Yamamoto H, Hayashi K, Scherb H. Association between the detection rate of thyroid cancer and the external radiation dose-rate after the nuclear power plant accidents in Fukushima, Japan. Medicine (Baltimore). 2019;98(37):e17165. doi: https://doi.org/10.1097/MD.0000000000017165
67. Toki H, Wada T, Manabe Y, Hirota S, Higuchi T, Tanihata I, et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Scientific Reports. 2020;10(1):4074. doi: https://doi.org/10.1038/s41598-020-60999-z
68. Katanoda K, Kamo K, Tsugane S. Quantification of the increase in thyroid cancer prevalence in Fukushima after the nuclear disaster in 2011 – a potential overdiagnosis? Japanese Journal of Clinical Oncology. 2016;46(3):284-6. doi: https://doi.org/10.1093/jjco/hyv191
69. Scott BR. A revised system of radiological protection is needed. Health Physics. 2024;126(6):419-23. doi: https://doi.org/10.1097/HP.0000000000001791
70. Tubiana M. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Académie des Sciences (Paris) and of the Académie Nationale de Médecine. International Journal of Radiation Oncology, Biology, Physics. 2005;63(2):317-9.
71. Scott BR. Evaluating thyroid cancer risks for nuclear workers related to the Fukushima Daiichi Nuclear Power Plant accident based on LNT theory is problematic. Journal of Radiation Research. 2024;65(2):259-61. doi: https://doi.org/10.1093/jrr/rrae002
72. Tatsuzaki H, Kishimoto R, Kurihara O, Tominaga T, Yamashita S. No evidence of thyroid consequences in seven nuclear workers at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant accident: 10-year follow-up results of thyroid status. Journal of Radiation Research. 2023;64(2):294-9. doi: https://doi.org/10.1093/jrr/rrac092
73. Ryabukha OI. [Age features of radioactive iodine (131I) absorption by rat thyroid glands in correction of the diet iodine deficiency with organic iodine]. The Medical and Ecological Problems. 2021;25(1-2):26-30. Ukrainian. doi: https://doi.org/10.31718/mep.2021.25.1-2.07
74. Kai M. [Biological half-life of radioiodine in normal Japanese thyroid]. Hoken Butsuri. 1983;18(1):3-10. Japanese. doi: https://doi.org/10.5453/jhps.18.3

ÄËß ÖÈÒÓÂÀÍÍß:
Ðÿáóõà Î.²., Ôåäîðåíêî Â.². ²îí³çóþ÷å âèïðîì³íåííÿ ÿê ÷èííèê ðèçèêó âèíèêíåííÿ ïàòîëî㳿 ùèòîïîä³áíî¿ çàëîçè (îãëÿä ë³òåðàòóðè). ó㳺íà íàñåëåíèõ ì³ñöü : çá. íàóê. ïð. Ê., 2024. Âèï. 74. Ñ. 75-91.