Andreevsky deposit on the environment, preventive measures have been developed to prevent harm to the environment, including the consequences of the planned activity for the safety of people and their health. The need for additional study of the issue of establishing a hygienic standard for the size of the sanitary protection zone for modern quarries for the extraction of refractory and refractory clays by the open method and introducing the corresponding changes in the «Sanitary classification of enterprises» of SSR N173-96 is determined. According to preliminary development, the adequacy of the SPZ size in 100 m for these objects is justified.

УДК: 613.5 : 696.146 : 725.5

САНІТАРНО-ЕПДЕМІОЛОГІЧНА СКЛАДОВА ПРОЕКТУВАННЯ СУЧАСНИХ СТОМАТОЛОГІЧНИХ МЕДИЧНИХ ЗАКЛАДІВ, ВБУДОВАНИХ В ЖИТЛОВІ БУДИНКИ

Махнюк В.М. ${ }^{1}$, Очеретяна Г.В. ${ }^{1}$, Гаркавий С.С. ${ }^{2}$, Арзу Акберов Елгарогли ${ }^{3}$, Сташко I.C. ${ }^{4}$ ${ }^{1}$ ДУ «Інститут громадського здоров ‘я ім. О.М. Марзєєва НАМН України», м. Київ
${ }^{2}$ Національний медичний університет імені О.О. Богомольия, м. Київ
${ }^{3}$ Головне управління Державної служби України з питань безпечності харчових продуктів та захисту споживачів в Київській області, м. Вишневе
${ }^{4}$ ТОВ «Арх-Інж-Проект», м. Київ

Умови розміщення сучасних медичних закладів стоматологічного профілю диференціюються в залежності від потужності та специфіки розміщення конкретного закладу. На сьогодні широко практикується розміщення медичних закладів стоматологічного профілю та стоматологічних кабінетів у вбудованих приміщеннях житлових будинків [1,2,3].

Для надання висококваліфікованих стоматологічних послуг населенню у медичних закладах стоматологічного профілю використовується новітнє високотехнологічне медичне обладнання (конусно-променеві комп‘ютерні томографи, дентальні рентгенівські апарати, у тому числі, пантомографи, плівкові та цифрові ортопантомографи).

Важливим питанням при розміщенні зазначеного медичного обладнання та його подальшої експлуатації в медичних закладах стоматологічного профілю, які розміщені у вбудованих приміщеннях житлових будинків, є розробка архітектурно-планувальних, здоров‘язберігаючих (запобіжних) заходів щодо мінімізації його впливу на прилеглі приміщення внутрішнього об‘єму житлового будинку [4,5].

3 метою попередження негативного впливу високотехнологічного високочутливого медобладнання на здоров‘я медичних працівників, пацієнтів та захисту суміжних приміщень житлового будинку, в якому розміщується медичний заклад, є необхідність розробки санітарно-гігієнічних вимог до його розміщення [3]. Зазначені питання є надзвичайно актуальними в умовах реформування галузей містобудування та охорони здоров‘я.

Мета роботи - розробка санітарноепідеміологічної складової до проектування сучасних медичних стоматологічних закладів, вбудованих у житлові будинки.

Матеріали та методи дослідження. Матеріалами досліджень були нормативні документи національного санітарного та містобудівного законодавства щодо розміщення, обладнання та експлуатації медичних закладів стоматологічного профілю, вбудованих в житлові будинки.

У роботі використовувалися такі методи: бібліосемантичні (для аналізу використання нормативно-правового регулювання), теоретичні (ретроспективне використання даних наукових досліджень), аналітичні (розробка методики гігієнічної оцінки проектів

будівництва); санітарно-епідеміологічної експертизи проектів будівництва і реконструкції вбудованих медичних закладів стоматологічного профілю в житлові будинки.

Результати дослідження. Вибіркою об‘єктів для дослідження були медичні заклади стоматологічного профілю невеликої пропускної спроможності, які розміщені зі сторони вуличних фасадів у вбудованих приміщеннях житлових будинків та оснащені високотехнологічним медичним обладнанням, яке є потенційним джерелом іонізуючого випромінювання та інших факторів, що можуть спричиняти негативний вплив на здоров‘я людини.

За результатами наукової санітарноепідеміологічної експертизи шести проектів щодо розміщення медичних закладів стоматологічного профілю у вбудованих приміщеннях житлових будинків, яка була проведена в лабораторії гігієни планування та забудови населених місць за період з 2009 року по 2016 рік, встановлено наступне.

У ході дослідження медичні заклади стоматологічного профілю були продиференційовані за наступними архітектурнопланувальними та санітарно-гігієнічними критеріями: розміщення з боку вуличних фасадів чи з боку внутрішньодворового прохо-

ду; площа рентгенівських приміщень; найменування та специфікація рентгенівського обладнання; умови природного освітлення; умови мікроклімату приміщень; характеристика вентиляції та кондиціювання повітря; впровадження профілактичних (компенсаційних) заходів від впливу іонізуючого випромінювання, яке справляє рентгенівське обладнання зазначених медичних закладів на медичний персонал, пацієнтів та мешканців прилеглих житлових квартир будинку, в якому розміщено заклад, та інші.

За санітарно-гігієнічною та архітекту-рно-планувальною характеристикою медичних закладів стоматологічного профілю, що наведена у таблиці 1 , досліджувані медичні заклади були розподілені таким чином: 3 медичні центри з надання медичної допомоги населенню комплексного, в тому числі стоматологічного профілю, 2 стоматологічні кабінети та 1 стоматологічна клініка.

За характеристикою місця розміщення та вхідної групи досліджувані об‘єкти у 50\% випадків (3 медзаклади) знаходились на першому та у підвальному поверхах, у 33,3\% випадків (2 медзаклади) - у цокольному поверсі та 1 об‘єкт ($16,7 \%$ випадків) - на першому поверсі житлового будинку.

Таблиця 1. Санітарно-гігієнічна та архітектурно-планувальна характеристика медичних закладів стоматологічного профілю.

$\begin{gathered} \hline \text { Тип медичного } \\ \text { закладу, } \\ \text { режим роботи } \end{gathered}$	Місце розташування та вхідна група	Характеристика рентгенобладнання	Площа рентгенівського кабінету	Суміжні приміщення з рентгенівським кабінетом
1. Медичний центр для надання населенню медичних (в тому числі стоматологічних) послуг. Режим роботи: 38^{00} до 20^{00}.	Нежитлові приміщення першого та підвального поверхів багатоквартирного житлового будинку. Має два входи, відокремлені від входів для мешканців житлового будинку.	Універсальна система для загальної радіографії AGFA DX-D300 (виро-бництвоНімеччина).	Рентгенівський кабінет знаходиться в підвальній частині медичного центру 3 обладнаним вікном у приямку (розміром $2,65 \times 2,28$ м) i складається з очікувальної, коридору та двох приміщень, пов'язаних між собою: процедурної площею 22,0 м ${ }^{2}$ та пультової площею 14,6 м ${ }^{2}$.	По горизонталі зі сторони вікон - вулиця, поруч - пультова, коридор медичного закладу; по вертикалі вхідна група нежитлових приміщень, вестибюль амбулаторного медичного закладу, знизу - фундамент.

$\begin{array}{\|c} \hline \text { Тип медичного } \\ \text { закладу, } \\ \text { режим роботи } \\ \hline \end{array}$	Місце розташування та вхідна група	Характеристика рентгенобладнання	Площа рентгенівського кабінету	Суміжні приміщення 3 рентгенівським кабінетом
2. Медичний центр для надання населенню медичних (в тому числі стоматологічних) послуг. Режим роботи: 38^{00} до 20^{00}.	Нежитлові приміщення 1го та підвального поверхів 4-ри поверхового житлового будинку (вуличний фасад). Має два входи, ізольовані від житлової частини будинку.	Ортопантомограф марки "Planmeca Pro One" (виробництво - Фінляндія) і дентальний рентгенівський апарат з візіографічною приставкою марки "Planmeca intra" (виробництвоФінляндія).	Площа процедурної - 8,4 м², площа кімнати керування $4,0 \mathrm{~m}^{2}$.	По горизонталі - $з$ громадським приміщенням без облаштування постійних робочих місць, по вертикалі - нежитлові приміщення, знизу - фундамент будівлі.
3. Медичний центр для надання населенню медичних (в тому числі стоматологічних) послуг. Режим роботи: 39^{00} до 21^{00}.	Нежитлові приміщення 1-го та підвального поверхів житлового будинку (вуличний фасад). Дві відокремлені вхідні групи, ізольовані від житлової частини будинку, один вхід є евакуаційним.	Томограф типу «PLANMECA Pro Max 3DMid» (виробництво Фінляндія) та дентальний рентгенівський апарат типу «PLANMECA РгоХ» (виробництво - Фінляндія).	Площа рентгенівського кабінету 10,0 м², площа кімнати керування $4,9 \mathrm{~m}^{2}$.	Суміжними приміщеннями до процедурної рентгенівського кабінету є приміщення: по горизонталі - хол для очікування, кімната керування, частково $з$ кабінетом лікаря стоматолога через капітальну стіну (шириною 0,8 м); по вертикалі: над кабінетом - покрівля (рентгенівський кабінет знаходиться в частині прибудови до житлового будинку), під кабінетом - підвальне приміщення.
4. Стоматологічний кабінет. Режим роботи: $\text { з } 10^{00} \text { до } 19^{00} \text {. }$	Нежитлові приміщення Iго поверху 9-ти поверхового житлового будинку. Окремий вхід, ізольований від житлової та офісної частин будинку.	Рентгенівський апарат PREVA (виробництвоСША) та апарат PLANMECA OY (виробництвоФінляндія) з анодною напругою 60-70 кВ та анодним струмом рентгенівської трубки до 8 мА.	Площа рентгенкабінету - 8,0 м 2, площа кімнати керування $-4,0$ м 2.	Межує з приміщеннями, без облаштування постійних робочих місць (очікувальна та компресорна).
5. Стоматологічний кабінет. Режим роботи: 39^{00} до 21^{00}.	Нежитлові приміщення цокольного поверху 5-ти поверхового жит-	Апарат рентгенівський дентальний діагностичний "Prodental" (виробництво-	Площа рентгенівського кабінету 7,2 м², площа кімнати керування 3,3 m^{2}.	Межує з приміщенням вестибулю-чекальні медичного закладу.

$\begin{array}{\|c\|} \hline \text { Тип медичного } \\ \text { закладу, } \\ \text { режим роботи } \\ \hline \end{array}$	Місце розташування та вхідна група	Характеристика рентгенобладнання	Площа рентгенівського кабінету	Суміжні приміщення з рентгенівським кабінетом
	лового будинку. Окрема вхідна група з боку вуличного фасаду.	Бразилія), анодний струм рентгенівської трубки 7 мА, величина напруги до 70 кВ.		
6. Стоматологічна клініка 3 консультативним кабінетом. Режим роботи: з 9^{00} до 20^{00}.	Нежитлові приміщення цокольного поверху житлового будинку (вуличний фасад). Дві вхідні групи, відокремлені від вхідної групи житлового будинку.	Ортопантомограф "PLANMECA PROONE" (ви-робництвоФінляндія), анодний струм рентгенівської трубки 1-10 мА, величина напруги до 60-90 кВ.	Площа рентгенівського кабінету 10,0 м 2, площа апаратної і тамбуру $5,1 \mathrm{~m}^{2}$.	Межує із зовнішньою бетонною стіною будинку та з усіх інших боків - з приміщеннями стоматклініки.

Всі медичні заклади (у 100\% випадків) мали окремі входи з вуличного фасаду будинку. У 67\% випадків (4 об‘єкти) передбачалось облаштування двох вхідних груп ізольованих від входів для мешканців в будинок, один з яких був основним - з вуличного фасаду, інший - евакуаційним. У 33,3\% випадків (2 об‘єкти) було облаштовано по одному входу з вуличного фасаду, який також ізольований від входу для мешканців житлового будинку. Отже розташування всіх досліджуваних медичних закладів з окремими ізольованими від житлових секцій вхідними групами не впливало на санітарногігієнічні умови проживання мешканців будинку, в якому розміщувався заклад та відповідало вимогам ДБН В.2.2-15-2005 «Будівлі і споруди. Житлові будинки. Основні положення».

При аналізі внутрішньопросторового об‘єму рентгенівських приміщень досліджуваних медичних закладів було встановлено наступне. У переважній більшості випадків досліджувані приміщення рентгенівського кабінету межували по горизонталі: з зовнішньою вуличною стіною, пультовою, коридором медичного закладу, вхідною групою нежитлових приміщень, з вестибюлем медичного закладу, холом для очікування, кімнатою керування; по вертикалі (над приміщенням): з громадськими приміщеннями, при-

міщеннями житлових квартир (коридор, кухня); під медичним закладом було розміщено підвальне приміщення, яке призначено для технічного обслуговування будинку.

При суміжному розташуванні приміщення рентгенівського кабінету та кабінету лікаря-стоматолога, що мало місце в одному випадку ($16,7 \%$), розмежуванням між цими приміщеннями слугувала капітальна стіна товщиною 0,8 м.

Зазначені архітектурно-планувальні та інженерно-технічні заходи слугували попередженню впливу іонізуючого випромінювання на працюючий медичний персонал та мешканців житлових будинків, в яких були розміщені медичні заклади та відповідали вимогам Державних санітарних правил i норм «Гігієнічні вимоги до влаштування та експлуатації рентгенівських кабінетів і проведення рентгенологічних процедур. ДСанПіН 6.6.3-150-2007», затверджених наказом Міністерства охорони здоров'я України від 04 червня 2007 року №294 (із змінами), зареєстрованим у Міністерстві юстиції України 07 листопада 2007 року за №1256/14523, «Державних санітарних норм і правил при роботі з джерелами електромагнітних полів. ДСаПіН 3.3.6-096-2002», НРБУ-97 "Норми радіаційної безпеки України" і не суперечили вимогам імплементованої Україною (розпорядження КМУ від 18.02.2015 р. №110-р)

Директиви Ради 2013/59/Євроатом, яка встановлює основні стандарти безпеки для захисту від іонізуючого випромінювання [5,6,7].

Режим роботи у всіх досліджуваних медзакладах був організований у денний та вечірній час, початок роботи, як правило розпочинався з 08^{00} і закінчувався о 21^{00} годині, що не впливало на акустичний режим прибудинкової території та приміщень житлових квартир і відповідало вимогам законів України «Про внесення змін до деяких законодавчих актів України щодо захисту населення від впливу шуму» від 03.06.2004 p. №1745-IV (із змінами, внесеними згідно 3 Законом №580-VIII від 02.07.2015 р.), «Про забезпечення санітарного та епідемічного благополуччя населення» від 24.02.1994 p. №4004-XII (із змінами, внесеними згідно з Законом №580-VIII від 02.07 .2015 р.), «Державних санітарних правил планування та забудови населених пунктів. ДСП №173-96», затверджених наказом МОЗ України від 19.06.1996 р. №173, зареєстрованим в Мін'юсті України 24.07.1996 р. №379/1404.

За характеристиками рентгенівського обладнання, яким оснащувався кожен медичний заклад, було встановлено, що у 100% випадків було використано закордонне сучасне високотехнологічне медичне обладнання: $5(55 \%)$ із 9 апаратів були дентальні апарати виробництва Фінляндії, США, Бразилії, $2(22,2 \%)$ із 9 - ортопантомографи виробництва Фінляндії, і по $1(11,1 \%)$ із 9 - томограф виробництва Фінляндії та універсальна система загальної радіографії виробництва Німеччини.

За технічними характеристиками рентгенівські трубки мали величину напруги у межах $60-90$ кВ та анодний струм у межах 110 мА, що відповідає вимогам ДСанПіН 6.6.3-150-2007.

За аналізом площ рентгенівських кабінетів встановлено, що найменша площа була у процедурній стоматологічного рентгенівського кабінету - 7,2 м², найбільша 22 м 2. Кімнати керування (пультова) мали площу від 4,0 м 2 до 5,1 м 2. Зазначені площі рентгенівських кабінетів та пультових відповідали технічним характеристикам рентгенстоматологічного обладнання та нормативам площі приміщення за ДСанПіН 6.6.3-150-

2007, ДБН В.2.2-10-2001 «Заклади охорони здоров‘я».

При оцінці показників вентиляції виявлено, що у 100\% випадків досліджуваних медичних закладів була запроектована механічна припливно-витяжна система вентиляції, з дво- три- або чотирикратним повітрообміном та організованим викидом повітря вище 0,7 м від покрівлі даху будинку, в якому розміщений медичний заклад, що відповідало вимогам ДБН В.2.5-67:2013 «Опалення, вентиляція та кондиціонування».

За показниками освітленості всі медичні кабінети лікарів-стоматологів (у 100\% випадків) були забезпечені природним освітленням з додатковим штучним електроосвітленням робочих місць світильниками з люмінісцентними лампами та лампами розжарювання (лампами денного світла) згідно з вимогами ДБН.В.2.5-28-2006 «Природне i штучне освітлення».

Розміщення високотехнологічного сучасного медичного обладнання в медичних закладах стоматологічного профілю, вбудованих в житлові будинки, можливе за умови проведення санітарно-епідеміологічної оцінки його розміщення в приміщенні рентгенівського кабінету за достатності та ефективності гігієнічних компенсуючих заходів рентгенівського захисту у кожному конкретному випадку, оскільки питання радіаційної безпеки персоналу та пацієнтів - невід‘ємна частина якості надання медичних послуг [3].

Проектні рішення із рентгенівського захисту від іонізуючого випромінювання в медичних закладах стоматологічного профілю наведені в таблиці 2.

При проведенні оцінки здоров‘язберігаючих (компенсаційних) заходів для захисту працівників та пацієнтів від іонізуючого випромінювання в досліджуваних шести медичних закладах стоматологічного профілю було встановлено наступне.

Планувальні компенсаційні заходи передбачали максимальне відмежування кабінету рентгенпроцедурної та кімнати керування від прилеглих кабінетів та були суміжними з приміщеннями, в яких відсутнє тривале перебування людей, або відсутнє зовсім. Рентгенологічний захист приміщень рентгенівських кабінетів був виконаний за окремими проектами «Рентгензахист», роз-

робленими спеціалізованими проектними організаціями або проектувальниками відповідно до вимог ДСанПіН 6.6.3-150-2007 [5].

Розрахунки по рентгензахисту були виконані для рентгенівського обладнання у кожному конкретному випадку з урахуванням його потужності. Так при розміщенні в медичному закладі універсальної системи для загальної радіографії AGFA DX-D300 (виробництво - Німеччина) було запроектовано облаштування стін з додержанням тов-

щини захисту еквівалентного свинцю не менше 1,7 мм, стіни між процедурною i пультовою - не менше 1,2 мм, стіни між процедурною і коридором медичного закладу - не менше 2,0 мм, обладнання оглядового вікна - склом товщиною не менше 1,2-2,0 мм. В зазначеному приміщенні рентгенівського кабінету дві стіни на рівні рентгенівського апарату виконані стальними листами.

Таблиця 2. Санітарно-гігієнічні характеристики умов медичних закладів стоматологічного профілю та заходи захисту від іонізуючого випромінювання.

Медичний заклад	Вентиляція рентгенівського кабінету	$\begin{gathered} \text { Освітлення } \\ \text { рентгенівського } \\ \text { кабінету } \\ \hline \end{gathered}$	Заходи захисту від іонізуючого випромінювання
1. Медичний центр для надання населенню медичних (в тому числі стоматологічних) послуг.	Всі приміщення медичного центру оснащені припливно-витяжною вентиляцією з механічним спонуканням. Витяжні повітропроводи із приміщень виведені вище даху житлового будинку.	Всі медичні приміщення центру забезпечені природним освітленням та нормативним рівнем освітленості робочих місць із встановленням освітлювальних приладів згідно ДБН В 2.5-28-2006 "Природне і штучне освітлення» та п.5.5 ДБН В.22-10-2001 "Заклади охорони здоров’я".	Облаштування свинцевим листовим покриттям товщиною: стіни №3 - не менше 1,7 мм; стіни №4 між процедурною і пультовою не менше 1,2 мм; стіни №5 між процедурною і коридором медичного закладу - не менше 2,0 мм; скла оглядового вікна стіни №4 не менше 1,2 мм; дверей у стіні №4 - не менше 1,2 мм; дверей у стіні №5 - не менше 2,0 мм. В рентгенівському кабінеті дві стіни на рівні рентгенівського апарату виконані стальними листами.
2. Медичний центр для надання населенню медичних (в тому числі стоматологічних) послуг.	Для вентиляції приміщень передбачені припливні та витяжні вентилятори П1, П2, ПЗ, П4, В1, B4, B5, B6, B7 фірми «Korf». В процедурній рентгенівського кабінету та кімнаті управління системи П2-В4.	Природне освітлення, електроосвітлення забезпечено відповідно до вимог ДБН В 2.5-282006, ДБН В.22-102001.	Захист огороджувальних конструкцій процедурної рентгенівського кабінету від іонізуючого випромінювання виконано згідно з розрахунком стаціонарного захисту.
3. Медичний центр для надання населенню медичних (в тому числі стоматологічних) послуг.	Механічна припливновитяжна вентиляція. У основних медичних приміщеннях передбачено кондиціонування повітря.	Природне та штучне (лампи денного світла) освітлення відповідає вимогам ДБН В 2.5-28-2006, ДБН В.22-10-2001.	Додатковий захист рентгенівського кабінету від рентгенівського випромінювання передбачено відповідно до розрахунку захисту - захисні панелі та захисний шар вхідних дверей та облаштування стінових захисних баритових панелей та свинцевого листового покриття дверей.

Медичний заклад	Вентиляція рентгенівського кабінету	$\begin{gathered} \text { Освітлення } \\ \text { рентгенівського } \end{gathered}$ кабінету	Заходи захисту від іонізуючого випромінювання
4. Стоматологічний кабінет.	Механічна припливновитяжна вентиляція з використанням зовнішнього вентилятора ВКО-150 продуктивністю 298 м ${ }^{3} /$ год, ВентТТ-150 продуктивністю 520 м³/год та ВентТТ-125 продуктивністю 280 м ${ }^{3} /$ год.	Bci робочі приміщення обладнані вікнами, які виступають над рівнем підлоги на 50 см, додатково використовується штучне освітлення, що відповідає вимогам ДБН В 2.5-28-2006, ДБН В.22-10-2001.	Облаштування будівельних перегородок рентгенівського кабінету свинцевими пластинами (листами) товщиною 1,0 мм.
5. Стоматологічний кабінет.	Комбінована система загальнообмінної припли-вно-витяжної вентиляції (2-4 кратний повітрообмін). Подача свіжого повітря забезпечується з боку зовнішньої стіни будинку на висоті 2 м. Вентвикид із медичних приміщень організовано вище гребеня даху житлового будинку на 0,7 м.	Всі робочі приміщення забезпечені вікнами, які виступають над рівнем підлоги на 50 см, додатково використовується штучне освітлення, що відповідає вимогам ДБН В 2.5-28-2006, ДБН В. 22-10-2001.	Влаштування суцільних фальшстін та фальш-стелі з свинцю товщиною $0,5-1,25$ мм та облаштування скління зовнішнього вікна приміщення кабінету тришаровим склом зі шторою із спецтканини фірми "Оніко" з коефіцієнтом захисту за сумарним свинцевим еквівалентом не менше 0,7 мм.
6. Стоматологічна клініка 3 кон-сультативним кабінетом.	Комбінована система загальнообмінної припли-вно-витяжної вентиляції. Подача свіжого повітря забезпечуватиметься 3 боку зовнішньої стіни будинку на висоті 2,0 м. Вентвикид із медичних приміщень організовано вище гребеня даху житлового будинку на 0,7 м.	Природне освітлення за рахунок наявних вікон на зовнішніх стінах площею 3,2-4,2 м² додатково використовується штучне освітлення, що відповідає вимогам ДБН В 2.5-28-2006, ДБН В. 22-10-2001.	При розміщені рентгенівського апарату в ізольованому приміщенні не потребує виконання рентгензахисних заходів стін зазначеного приміщення, проте вимагає додаткового захисту стелі рентгендіагностичної шляхом влаштування суцільної баритобетонної штукатурки товщиною 10,4 мм, а також влаштування захисту дверей та оглядових вікон свинцевими пластинами товщиною $0,17-1,0$ мм.

У медичних центрах, які були обладнані томографом типу «PLANMECA Pro Max 3DMid» (виробництво - Фінляндія) та дентальним рентгенівським апаратом типу «PLANMECA РгоX» (виробництво - Фінляндія) були реалізовані профілактичні заходи шляхом виконання захисних панелей та захисного шару вхідних дверей та облаштування стінових захисних баритових панелей та свинцевого листового покриття дверей.

У двох стоматологічних кабінетах обладнаних рентгенівським апаратом PREVA
(виробництво - США), апаратом PLANMECA ОУ (виробництво - Фінляндія), дентальним рентгенівським діагностичним апаратом "Prodental" (виробництво - Бразилія) були виконані наступні профілактичні санітарно-технічні заходи: будівельні перегородки рентгенівських кабінетів виконані із свинцевих пластин (листів) товщиною 1,0 мм, суцільні фальш-стіни та фальш-стелі виконані із свинцю товщиною $0,5-1,25$ мм (за свинцевим еквівалентом), скління зовнішнього вікна приміщень рентгенівських ка-

бінетів тришаровим склом зі шторою із спецтканини фірми "Оніко" з коефіцієнтом захисту за сумарним свинцевим еквівалентом не менше 0,7 мм.

У стоматологічній клініці при розміщенні ортопантомографу "PLANMECA PROONE" (виробництво - Фінляндія) в ізольованому приміщенні не потребувалося виконання заходів із рентгензахисту стін зазначеного приміщення. Додатковий захист був передбачений для стелі рентгенівської діагностичної шляхом влаштування суцільної баритобетонної штукатурки товщиною 10,4 мм, та був виконаний захист дверей та оглядових вікон свинцевими пластинами товщиною $0,17-1,0$ мм.

Огороджувальні конструкції процедурних рентгенодіагностичних кабінетів, кабінетів комп‘ютерної томографії і рентгенопераційних відділень мали стаціонарний захист від іонізуючого випромінювання.

Розрахунок рентгензахисту огороджуючих конструкцій процедурної та рентгенівського кабінету, де встановлювалось високотехнологічне медичне обладнання, розроблявся спеціалізованою проектною організацією як окремий обов‘язковий розділ проекту у кожному конкретному випадку.

Реалізація запропонованих проектом саніта-рно-технічних заходів повинна забезпечувати надійний захист приміщень, які є суміжними з цим кабінетом та знаходяться над i під цим кабінетом, від функціонування рентгенівського апарату, і відповідає умовам його розміщення згідно 3 «Нормами радіаційної безпеки України НРБУ-97» [7].

За результатами розгляду проектних матеріалів щодо розміщення медичних закладів стоматологічного профілю у вбудованих приміщеннях житлових будинків, було запропоновано провести санітарну паспортизацію цих закладів територіальними установами, що здійснюють державний нагляд (контроль) за дотриманням санітарного законодавства, в тому числі здійснення в межах компетенції контролю за факторами середовища життєдіяльності людини, що мають шкідливий вплив на здоров‘я населення [1].

Дозвіл на проведення стаціонарного захисту від іонізуючого випромінювання згідно з розрахунками проекту та оформлення санітарного паспорта на джерело іонізуючого випромінювання та на право роботи з ним здійснюється відповідно до вимог ДСанПіН 6.6.3-150-2007 [5].

Висновки

За результатами гігієнічної оцінки проектів розміщення сучасних медичних закладів стоматологічного профілю невеликої пропускної спроможності, вбудованих в житлові будинки та оснащених високотехнологічним медичним обладнанням, встановлено наступне:

- медичні заклади стоматологічного профілю проектуються у вбудованих приміщеннях житлових будинків з метою наближення стоматологічних медичних послуг для населення в умовах ущільнення житлової та громадської забудови;
- розміщення медзакладів стоматологічного профілю на першому та цокольному поверхах $з$ боку вуличних фасадів та з окремими ізольованими від житлових секцій вхідними групами не призводить до погіршення умов проживання мешканців;
- режим роботи медичних закладів стоматологічного профілю вбудованих в житлові будинки з 8^{00} до 21^{00} не впливає на акустичний режим прибудинкової території та житлових квартир будинку та не порушує законодавство щодо захисту населення від впливу шуму;
- оснащення медзакладів стоматологічного профілю сучасним високотехнологічним медичним обладнанням та апаратурою закордонного виробництва (США, Фінляндія, Німеччина, Бразилія) підвищує безпеку та якість надання стоматологічних послуг населенню та покращує умови праці медичного персоналу;
- розташування медичного обладнання у внутрішньопросторовому об‘ємі рентгенівських приміщень медичних закладів стоматологічного профілю з дотриманням розмежування з іншими медичними кабінетами та житловими приміщеннями відповідало вимогам санітарного законодавства України щодо радіаційної безпеки персоналу, пацієнтів та мешканців;
- комплекс профілактичних компенсаційних заходів із рентгензахисту забезпечував дотримання санітарно-гігієнічних умов праці медперсоналу, пацієнтів та мешканців житлового будинку, в якому розміщений медичний заклад та відповідає вимогам санітарного законодавства України та Директиви Ради 2013/59/Євроатом щодо норм безпеки для захисту від іонізуючого випромінювання.

Таким чином, проектування сучасних медичних закладів стоматологічного профілю невеликої пропускної спроможності, вбудованих в житлові будинки, з розробкою санітарноепідеміологічної складової, не впливатиме на умови життєдіяльності мешканців та наближатиме медичні стоматологічні послуги до населення.

ЛІТЕРАТУРА

1. Сердюк А.М., Полька Н.С., Махнюк В.М., Савіна Р.В., Могильний С.М. Гігієна планування та забудови населених місць на варті громадського здоров‘я (до 85 -річного ювілею ДУ «Інститут громадського здоров‘я ім. О.М. Марзєєва НАМНУ»). - К. : Медінформ, 2017. - 116 c..
2. Махнюк В.М., Фещенко К.Д., Могильний С.М. Гігієнічні питання запобіжного державного санітарно-епідеміологічного нагляду при розміщенні лікувально-профілактичних закладів з рентгенкабінетами. Укр. радіол. журн. 2011. - Т. XIX. - Вип.3. - С. 348-350.
3. Мишковська А.А. Основні проблемні питання здійснення державного санітарного та епідеміологічного нагляду за використанням джерел іонізуючого випромінювання в медичній практиці. Укр. радіол. журн. 2011. - Т. XIX. - Вип.3. - С. 350-352.
4. Костенецький M.I. Стан радіаційної безпеки пацієнтів при рентгенологічних процедурах та шляхи її удосконалення. Довкілля та здоров‘я. 2015. - №1. - С. 35-37.
5. Державні санітарні правила і норми "Гігієнічні вимоги до влаштування та експлуатації рентгенівських кабінетів і проведення рентгенологічних процедур ДСанПіН 6.6.3-1502007" із змінами, внесеними Наказом МОЗ України №1126 від 22.09.2017, зареєстрованим в Мін‘юсті України за №1269/31137 від 17.10.2017.URL : http://zakon.rada.gov.ua/laws/show/z1269-17.
6. Директива Ради 2013/59/Євроатом від 5 грудня 2013 року, що встановлює основні норми безпеки для захисту від небезпеки, що виникає від іонізуючого випромінювання. URL : www.kmu.gov.ua/storage/app/media/uploaded-files/radi-201359evratom.pdf
7. Норми радіаційної безпеки України (НРБУ-97). URL : http://zakon.rada.gov.ua/rada/show/v0062282-97.

> САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКАЯ СОСТАВЛЯЮЩАЯ ПРОЕКТИРОВАНИЯ СОВРЕМЕННЬХ СТОМАТОЛОГИЧЕСКИХ МЕДИЦИНСКИХ УЧРЕЖДЕНИЙ, ВСТРОЕННЬХ В ЖИЛЬЕ ДОМА

Махнюк В.М., Очеретяная А.В., Гаркавый С.С., Арзу Акберов Елгарогльь, Сташко И.С.
По результатам проведенной санитарно-эпидемиологической оценки проектов размещения медицинских учреждений стоматологического профиля, встроенных в жилье дома, установлено следующее.

Во всех случаях было предусмотрено размещение современных медучреждений небольшой пропускной способности на первом и цокольном этажах со стороныь уличных ϕ рсадов с отдельными изолированными от жилых секций входными группами, что не приводило к ухудшению санитарно-гигиенических условий проживания жильиов.

Запланированный режим работы исследованных медицинских учреждений стоматологического профиля, встроенных в жилые дома, не влиял на акустический режим придомовой территории и жильх квартир дома.

Архитектурно-строительные и планировочные решения относительно расположения медицинского оборудования в внутрипространственном объёме рентгеновских помещений медицинских учреждений предусматривали разграничения с другими помещениями в соответствии с требованиями радиационной безопасности и обеспечивали эффективную рентгензащиту.

В процессе исследования была разработана санитарно-эпидемиологическая составляющая к проектам размещения современных стоматологических учреждений небольшой пропускной способности, размещенных со стороны уличных фасадов во встроенных помещениях жилых домов и оснащенных импортным высокотехнологическим медиџинским оборудованием. Разработаны санитарно-гигиенические мероприятия, направленные на минимизацию влияния медицинского оборудования на условия труда медперсонала и условия проживания жителей жилого дома, а также других факторов влияния.

SANITARY AND EPIDEMIOLOGICAL COMPONENT OF THE DESIGN OF MODERN DENTAL MEDICAL INSTITUTIONS, BUILT INTO RESIDENTIAL BUILDINGS
 V.M. Makhniuk, G.V. Ocheretiana, S.S. Garkaviy, Arzu Akberov Elgarogli, I.S. Stashko

According to the results of the sanitary-epidemiological assessment of the projects for the placement of medical institutions of the dental profile embedded in residential buildings, the following was established.

In all cases, provision was made for the placement of modern medical facilities of a small capacity on the ground and basement floors from the street facades with separate entrance groups isolated from the residential sections, which did not lead to a deterioration of the sanitary and hygienic living conditions of the residents.

The planned mode of operation of the investigated medical institutions of the dental profile, built-in residential buildings, did not affect the acoustic mode of the local area and residential apartments.

Architectural, construction and planning decisions regarding the location of medical equipment in the spatial volume of X-ray premises of medical institutions provided for the delimitation with other premises in accordance with the requirements of radiation safety and ensured effective X-ray protection.

In the course of the study, a sanitary-epidemiological component was developed for projects for the placement of modern dental institutions of small carrying capacity, located on the side of street facades in the built-in premises of residential buildings and equipped with imported high-tech medical equipment. Sanitation and hygiene measures have been developed to minimize the impact of medical equipment on the working conditions of medical staff and the living conditions of residents of a dwelling house, as well as other factors of influence.

ГІГІЄНІЧНА ОЦІНКА ВПЛИВУ НАСЛІДКІВ ДІЯЛЬНОСТІ ПІДПРИЄМСТВ НА ДОВКІЛЛЯ ПРИ ЗАПРОВАДЖЕННІ НОВИХ СУЧАСНИХ ТЕХНОЛОГІЙ НА ЦУКРОВИХ ЗАВОДАХ

Махнюк В.М. ${ }^{1}$, Пелех Л.В. ${ }^{1}$, Мельниченко С.О. ${ }^{1}$, Петров Ю.А. ${ }^{2}$
${ }^{1}$ ДУ «Інститут громадського здоров'я ім. О.М. Марзєєва НАМНУ», м. Київ
${ }^{2}$ ПП «Південно-український центр екологічних послуг», м. Херсон

[^0]та сільському господарстві України. Важливе значення в економіці країни має не тільки

[^0]: Актуальність. Цукрова галузь є однією 3 найбільших у харчовій промисловості

